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An efficient and robust upwind method for solving the chemical non- 
equilibrium Navier-Stokes equations has been developed. The method 
uses either the Roe or Van Leer flux-splitting for inviscid terms and 
central differencing for viscous terms in the explicit operator (residual), 
and the Steger-Warming (SW) splitting and lower-upper (LU) 
approximate factorization for the implicit operator. This approach is 
efficient since the SW-LU combination requires the inversion of only 
block diagonal matrices, as opposed to the block tridiagonal inversion 
of the widely used ADI method, and is fully vectorizable. The LU 
method is particularly advantageous for systems with large number of 
equations, such as for chemical and thermal nonequilibrium flow. 
Formulas of the numerical method are presented for the finite-volume 
discretization of the Navier-Stokes equations in general coordinates. 
Numerical tests in hypersonic blunt body, ramped-duct, shock 
wave/boundary layer interaction, and divergent nozzle flows 
demonstrate the efficiency and robustness of the present method. 
‘CC 1992 Academic Press. Inc. 

1. INTRODUCTION 

Maximizing accuracy, efficiency, and robustness has been 
the primary goal for designing algorithms in numerical 
analysis. This is especially important for solution of the 
complex multi-dimensional Navier-Stokes equations which 
may include a large system of chemical reactions and other 
models such as turbulence equations. In the past there have 
been two approaches to solving the reacting flow governing 
equation set. One approach is to decouple the flow equa- 
tions from the species (and nonequilibrium thermal energy) 
equations and solve them separately by either an implicit or 
explicit method [ 11. This approach has the advantage that 
it is relatively easy to implement and that the flow and 
species equation sets may be solved using different schemes. 
However, for flows with very significant nonequilibrium 
effects and large thermal energy changes due to heat release 
or absorption, the decoupled approach is likely to be less 
robust and may encounter difficulties in convergence. The 
second approach involves solving all the equations in 
a simultaneous, coupled manner [2-41. In Refs. [2-41 

coupled, implicit algorithms are successfully used to solve 
thermo-chemical nonequilibrium flow problems. 

Recently upwind schemes [S-7] have achieved recogni- 
tion for their capability of yielding accurate representation 
of discontinuities and for the sound theoretical basis of 
characteristic theory of hyperbolic systems. Liou and Van 
Leer [S] compared several prominent flux splitting schemes 
for a wide range of problems regarding their accuracy and 
efficiency. With the renewed interest in high-temperature 
and chemically reacting flows, these methods have recently 
been extended to real gases by several researchers [S-15]. 

Since the mid-seventies, the AD1 method developed by 
Beam and Warming [ 163 has become popular and led 
to the successful development of the well-known ARC3D 
code that has demonstrated itself as a viable method for 
treating many aerodynamic problems involving ideal gases. 
However, a major deficiency of the AD1 method is the 
unconditional instability in delta form in three dimensions, 
resulting from the factorization error. The instability is from 
a linear analysis and without boundary conditions taken 
into account. In practice the approach does work, provided 
that appropriate amount of artificial damping is added. The 
AD1 method requires the inversion of large block banded 
(tridiagonal or pentadiagonal) matrices, which can be very 
costly when a large number of species/thermal energy equa- 
tions are solved along with flow equations in chemical/ther- 
mal nonequilibrium flows. Instead of splitting the implicit 
operator into three factors (in three-dimensional problems), 
Jameson and Turkel [ 171 constructed an LU scheme that 
requires only two factors involving lower (L) and upper (U) 
triangular matrices. Based on the same principle, Steger and 
Warming [ 51 independently developed an LU factorization 
procedure for their flux-splitting method for ideal gases. The 
LU scheme is unconditionally stable in any number of spa- 
tial dimensions and yields a steady-state solution indepen- 
dent of time step. Unlike the block banded diagonal system 
resulting from the AD1 scheme, the LU scheme results in a 
block diagonal system for which the computational effort is 
moderate. Furthermore, the scheme can easily take full 
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advantage of vectorization in the solution of the LU factors, 
avoiding the recursive procedure occurring in the banded 
diagonal system. Consequently, the LU scheme is an attrac- 
tive method for reacting flows where the block size is large 
due to the presence of species equations and deserves further 
attention. 

In some of the earlier work on LU factorization [3, 18, 
191, the explicit (residual) operator is constructed using 
central difference, the implicit operator, on the other hand, 
using one-sided difference. Although a one-sided difference 
is used for the implicit operator, it does not constitute an 
upwind scheme. This is because the splitting of the inviscid 
flux Jacobian matrices in these studies is not obtained 
according to the directions of wave propagation. Reference 
[S] is a notable exception in that both the implicit and 
explicit operators are constructed using an upwind method, 
but only for perfect-gas flows. Therefore, it is natural to ask 
the questions-how does one apply the LU approximation 
to modern upwind schemes, especially for reacting flows, 
and how well do these resulting schemes perform in 
practice? 

It is our objective in this paper to develop a new proce- 
dure that combines the accuracy of modern upwind schemes 
and the efficiency of the LU scheme for chemical non- 
equilibrium flows. In the next section, we briefly discuss the 
governing equations and real-gas properties for chemical 
nonequilibrium flows. The derivation of split-flux formulas 
and viscous formulation are given in Section 3. Then in 
Section 4 we describe the development of the LU implicit 
algorithm. Finally, in Section 5 we show numerical 
results for hypersonic blunt body, ramped-duct, shock 
wave/boundary layer interaction, and divergent nozzle 
flows. Only laminar flows are considered in the present 
study. 

2. GOVERNING EQUATIONS 

The two-dimensional, Navier-Stokes and species trans- 
port equations for a chemically reacting gas of N species are 
given by 

i3U 8F dG t3F i?G -I-LI-L-+=s, 
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In these equations, the physical variables are the density p, 
the velocity components (u, v), the pressure p, the tem- 
perature T, the internal energy e, and the total energy 
E = e + i(u” + v’). The mass concentration and enthalpy of 
species i are respectively Ci and hi, and p and k are 
molecular viscosity and thermal conductivity, respectively, 
of the gas mixture. The source term for species i due to 
chemical reactions is Sj, and ~7, and Zi are the diffusion 
velocities of species i in the x- and y-direction, respectively, 
which are found by Fick’s law: 

y.;.= -D. 3 I I rm ax’ 

y.v”.= -D. 3 I I lm ay ’ 

where Yi= CJp is the mass fraction of species i, 
D, = (1 - X,)E,“, i Xi/D, is the effective binary diffusivity 
of species i in the gas mixture, obtained by treating the 
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species: i and the surrounding gas as a binary mixture [20], 
and Xi is the molar fraction of species i. It should be noted 
that Fick’s law is a convenient approximation of the multi- 
component diffusion equations obtained from the kinetic 
theory of gases. The validity of this approximation is 
discussed in detail in [20 J. 

In reacting flow calculations, the evaluation of thermo- 
physical properties is of vital importance. In this paper, the 
specific heat C,, thermal conductivity k, and viscosity p for 
each species are determined by fourth-order polynomials of 
temperature. The coefficients of these polynomials were 
obtained from [21] and are valid up to a temperature of 
10,000 K. The specific heat of the gas mixture is obtained by 
mass concentration weighting of individual species. The 
thermal conductivity and viscosity of the mixture, however, 
are calculated using Wilkes mixing rule [22]. The binary 
mass diffusivity D, between species i andj is obtained using 
the Chapman-Enskog theory [22]. 

To close the system of equations, Eq. (l), we need to 
define the equation of state. We begin by assuming that the 
macroscopic thermodynamic properties of 
related through the general equation of state, 

p = P(P, e, Cl, G, . . . . CN- I). 

the gas are 

(2) 

We note that, since the total mass density is already 
included, only N- 1 species are independent for a chemical 
system of N species. If we further assume that the inter- 
molecular forces and the volume occupied by molecules are 
negligible, the gas mixture pressure p may be expressed as 
the sum of the partial pressure due to each species in the 
ideal-gas relation: 

where R, is the universal gas constant and Wi is the 
molecular weight of species i. The temperature T appearing 
in the above equations is obtained from the enthalpy 
relationship, 

h= ~ Yihi= ~ Yj(h~+ri C,dT 
> 

, 
i=l ,=l TR 

(4) 

and h; and C,, are the heat of formation and constant 
pressure specific heat of species i, respectively; T, is the 
reference temperature for thermodynamic properties. 

A(.)=(.),-(.),, ;i=A(o), 

and 

0 = O(U,, I-J,). 

The flux-splitting formulation in the present paper The object now is to find an average state known as the 
requires the definition of the (frozen) speed of sound and Roe-average state, such that Eq. (7) is satisfied exactly for 
pressure derivatives pp, per and pc, (the partial derivatives of all admissible pairs (U,, U,). In the case of a calorically 
p with respect to p, e, and C,, respectively, while holding perfect gas this is easily accomplished, since Eq. (7) 

other variables fixed). These quantities can be obtained 
from the equation of state as follows: 

(5) 

(6a) 

(6b) 

where W= ((l/p) Cr’= r (C,/W,))-’ is the molecular weight 
of the gas mixture, Cv=Cyzl CiCJp-R,/W is the 
constant-volume specific heat of the gas mixture, and 
ei = 1 TR C,, dT + h;, - R, T/ Wi is the specific internal energy 
of the ith species. 

The finite-rate chemistry model used in the present 
calculations includes five species (O,, N,, 0, N, NO) and 
11 elementary reaction steps for the dissociation and recom- 
bination of air. The reactions and the rate coefficients are 
taken from Dunn and Kang [23]. 

3. EXPLICIT (RESIDUAL) OPERATOR 

3.1. Roe Splitting 

To construct Roe flux-difference splitting, one usually 
defines an average state fr such that the flux differences 
between two neighboring states, denoted by “L” and “R”, 
are related to the differences in state 
x-direction): 

AF=;iAU, 

where 

variables by (for the 

(7) 

A(U) = aF/au 
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represents four relatively simple equations with four 
unknowns in 8 (in two dimensions). For a reacting gas, the 
simplicity is lost and the definition of the average state is 
non-unique. In [14, 151, sets of average variables are 
derived for both chemical equilibrium and nonequilibrium 
flows, which are shown to be consistent and to work well. 

Since the eigenvalues of the Jacobian matrix A are real 
[15], the splitting of these eigenvalues according to their 
signs leads to the splitting of A: 

A=A++A-. @a) 

Thus, the flux difference can be split accordingly, 

dF=dti+ +dF--, dF’=ii;’ dU. WI 

The split flux differences AG * and the flux Jacobian 
matrices B, B’, and B’ in the y-direction are defined 
similarly. 

Although the Roe splitting in Cartesian coordinates can 
be easily constructed, it requires special care in general 
coordinates, where geometric metrics are involved in the 
formulation. We note that the Roe-average variables should 
be obtained independent of geometric quantities and the 
metrics at the cell interface are to be used in the evaluation 
of split fluxes. 

In general coordinates (5, I], 0, the interface flux is 
represented by the inner product of the Cartesian flux vector 
and the surface unit vector. Specifically, the inviscid flux in 
the <-direction, P, in 2D general coordinates (&r~) can be 
written as 

FJ~,F-x,G) 
&j-q’ 

and the Jacobian 

A _ aF _ (Y,A-x,B) 
au Jqq’ Pb) 

where x7 and y, are covariant metrics evaluated at the inter- 
face, and ,/w is the cell interface area (length in 2D). 
The inviscid flux t! and flux Jacobian B in the q-direction 
are obtained by replacing yll and x,, with - yc and -xg, 
respectively, in Eqs. (9a) and (9b). 

Next, we turn to the derivation of split fluxes via splitting 
matrices. Warming, Beam, and Hyett [24] showed that a 
combination of component Jacobians for inviscid fluxes is 
diagonalizable, specifically 

A=S,A,S,‘, (10) 

where A, contains the (real) eigenvalues of A, i.e., 

A, = diag(&), 

J&m = UC, ug, u,+a,u<-a,~<, . . . . ug, (11) 

u = (Y,U-x,u) 
5 Jqq’ 

S, and SF ’ are similarity matrices and are composed of the 
right and left eigenvectors of A, respectively. The matrix S5 
and its inverse SF ’ are frequently used in numerical flux 
functions and are given in the Appendix for a chemical 
nonequilibrium gas in general coordinates. 

For clarity of presentation, in the derivation of similarity 
matrices and the rest of the paper we have set N= 5, which 
is the number of species considered in our chemistry model. 
Following the same procedure as in the case of Cartesian 
coordinates, one finds the splitting of the Jacobian matrix A 
in general coordinates, 

J&=.X+ +A-, A’=S&S,‘, (12) 

where “f = diag[(&, + II,, I)/2]. This leads to the splitting 
of the flux difference, 

and 

(13a) 

&‘&AU. (13b) 

The split fluxes in the q-direction, A e *, can be similarly 
obtained. We note that in the above derivation only flow 
properties in the L and R cells are used in the evaluation of 
the Roe-average state (Eq. (7)), i.e., the metrics are not 
involved. Note, further, that cell interface metrics are used 
in the similarity matrices and the diagonalization proce- 
dure. 

3.2. Van Leer Splitting 

In our previous studies [ 14,151, we have extended the 
Van Leer splitting to a general equilibrium gas and a gas 
not in chemical equilibrium for 1D flows. The further 
generalization of the splitting to 2D general coordinates is 
straightforward; the formulas are given below. 

The splitting in the [-direction has the standard form 

p=P++p-, (14) 

and is carried out only when the eigenvalues have mixed 
signs, i.e., when M: < 1 for the system of Eq. (1) with 
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eigenvalues given by Eq. (11) (MS = u,/a is the local Mach 
number). The split mass, momentum, and energy fluxes are 

F,‘=PF[H-m(u,+a)*], (15d) 

where H is the specific total enthalpy. Exactly as in the 1D 
case [ 14, 151, the parameter m generates a family of split- 
tings; Van Leer’s splitting is a member of this family, found 
by requiring that the terms in the square bracket of the eg 
fluxes form a perfect square. This leads to 

m=h 

To avoid an indeterminate value in numerical evaluation at 
stagnation points or no-slip boundaries, the above formula 
is modified to 

h m=-- 
a2+2h’ 

This modified formula is used everywhere in the flowfield. 
The apparent indeterminacy, which is unique to the cur- 
vilinear coordinates, results from requiring the terms in the 
square bracket in Eq. (15d) to form a perfect square; other 
formulations may not have this problem. It is noted that, 
since limU-rO,v~O u:/(u’ + II’) has a finite value, the above 
indeterminacy occurs only in the numerical evaluation but 
not in the continuous form; therefore, it does not represent 
a deficiency in the Van Leer splitting theory. The concentra- 
tion fluxes simply follow from a linear convection principle; 
i.e., 

The split fluxes in q-direction can be similarly obtained. 

3.3. Evaluation of Viscous Fluxes 

The viscous flux vector in general coordinates is 
expressed as the inner product of the cell surface unit vector 
and the Cartesian components of the flux vector, which 
results in 

9 (16) 

where, as in the case of inviscid fluxes, the metrics are 
evaluated at the cell interface. The form for c, is obtained 
simply by replacing metrics y, and x,, with - y, and -xl, 
respectively. The evaluation of the terms in Eq. (16) 
amounts to calculating the Cartesian gradients at the cell 
interfaces. This requires the construction of an auxiliary cell 
whose two sides in the r-direction contain the center of the 
two neighboring regular cells. In the equations presented in 
this and the following sections, the integer indices i, j denote 
the cell-center location, and the half-integer indices denotes 
the location of the cell interface. The Cartesian gradients for 
a generic function f at the regular cell interface i + 4 are then 
evaluated by 

af ( > T& i+ 1,2,,= CYq+ l/*,.i(fi+ *,i-f,.i) 

- Y5,+1;2.,(fi+ l/2, j+ l/2 

-fi+1,2,,~1,2wK+I,2,,> (17a) 

-X ,,+,;,,,(f~+I.j-f~,j)llvi+1/2,i~ (17b) 

where Vi+ ,,2 i is the volume of the auxiliary cell, and 

X VA+ 1;2,, = xz+ lJZ,j+ 1/2-xi+ llZ,j- l/2 

Y qr+,1;2,,= Yi+ l/2,1+ L/2 - Yi+ l/2.1- l/2 

X~,+,,2.,=Xi+1,i-X~,J 

Y,+ 1,2., = Yi+ I.j- Yi,j. 

The variables f with half-integer indices are not available 
from the solution of the governing equations, and thus need 
to be approximated. The average of the four adjacent 
cell-center values is adopted here. 
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3.4. Spatial Differencing 

A cell-centered finite-volume formulation is adopted for 
the spatial differencing. This amounts to integrating the 
governing equations via Green’s theorem and evaluating 
the fluxes at each interface. The discretized form of the 
explicit operator (residual) in two dimensions is given as 

R= C+‘m (P-Po))i+ 1p.j 

- Cd= tp - po))i- l/2, j 

+(J~(c-cu))i,j+1/2 

- (JXm (c - co)),,j- 112 -Si,j f’i,j, (‘8) 

where Vi, j is the cell volume, (dm)ik 1,2, j and 
(Jx~)~. j+ 1,2 are the cell interface areas (lengths in 2D). 
The coordinates of the cell center is defined by averaging the 
four corners, and the cell volume is given by the expression 

vi,~=“~5C(xi+1/2,j+I/2-xi-l/2,j-11/2) 

’ (Yi- 1/2,j+1/2-Yi+l/2,j-lI/Z 1 

- txi- 1/2,j+ l/2 - xi+ 1/2,j- l/2) 

(Yi+l/2,j+1/2-Yr-1/2,j-1/2)1. 

The viscous fluxes are evaluated by central differencing, 
while the inviscid fluxes are treated by a second-order 
upwind method. The upwind method is constructed by first 
splitting the local interface inviscid flux into positive and 
negative components, according to the wave propagation 
directions, as follows, for the flux in the t-direction (omit- 
ting the index j ): 

pi+ l/2 = CT l/2 + RL l/2’ (19a) 

The cell-interface fluxes are then determined by interpola- 
tion from the cell-center values: 

where 

and A, and A,+ are the backward and forward difference 
operators, respectively, in the <-direction, and li is the width 

of cell (i, j) in the <-direction. Combining “ +” and “ -” 
fluxes, the interface flux is obtained as 

&+1,2=1 (P,+Pi+l)-+A;(~+ -B,) 

+(~iA~F~-ljiA~‘~+l). (20) 

The first term is a simple average of the cell-center fluxes, 
while the combination of the first and second terms 
constitutes the first-order upwind scheme. The third term 
represents the anti-diffusive flux which makes the scheme 
second-order accurate. The flux differences appearing in 
Eqs. (19) and (20) can be evaluated using either a flux- 
vector splitting scheme or a flux-difference splitting scheme. 
Both schemes, i.e., the Van Leer’s flux-vector splitting and 
the Roe’s flux-difference splitting, are considered in the 
paper. 

Note that the nonuniformity of cell sizes is taken into 
account in cli and /Ii. Improvements of accuracy were 
reported in [25] by properly accounting for the cell non- 
uniformity, which can contribute to large errors in regions 
of highly stretched grids. To eliminate oscillations and to 
obtain a sharp representation of discontinuities, we use an 
upwind-based TVD scheme, which amounts to introducing 
limiters in the higher-order terms in Eq. (19): 

et l/2 = p: +a,Y,?Ad;F’+, (21ai 

~,,,,=~,,-~~~‘,,A;~,,. @lb) 

The limiters Y + and Y - are nonlinear functions of some 
approximate ratio of neighboring flux differences. A “min- 
mod” type limiter function is used in the present study; more 
details regarding the present TVD formulation can be found 
in [15, 261. 

In Eqs. (20) and (21), the “+” and “-” fluxes, P’, are 
first obtained at cell centers. Their values at cell interfaces 
are then determined by upwind extrapolations. This is com- 
monly referred to as a flux differencing approach [27]. 
In multi-dimensional curvilinear coordinates the flux 
differencing approach is cumbersome to implement, as the 
choice of metrics for the higher-order terms in the normal 
fluxes can be ambiguous in regions of highly convoluted 
grids. 

To circumvent the difficulty of metric ambiguity, the 
MUSCL approach [27] is adopted (for the Van Leer 
splitting) in the present study. In MUSCL, one extrapolates 
cell-center values of flow variables Q toward the interfaces 
(metric factors are not involved) and then obtains the 
interface split fluxes using the extrapolated variables, i.e., 

vi l/2 = p+(Q, l/h 

f?; 1,2 = F-(QL+ 1,213 
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where the interface flow variables Q * are defined as system for which the computational inversion effort is 
moderate. Furthermore, the LU factors are fully vec- 

QL l/2 =Qj+,-~@,?+l,2, 

and flux limiting is applied through a’, 

@,++,,,=max[O, min(d +,sgn A-,, 

bA -, w A +,)I se A +,, 

@ii 112 =max[O, min(A-, sgn A+,, 

bA+, sgn A -,)I sgn A -,, 

where 

b= 1. (25~) here F, = AU and F = A,U, yielding F, = - A,U. It was 

Conservative variables are used for Q in Ref. [27], 
shown in [ 14, 151 that for a gas, with an arbitrary equation 

however, it was found that using primitive variables, i.e., 
of state, F, is nonzero and the matrices A and A,, have a 

Q = (p, u, v, p, C,/p), yields better convergence for flows 
complete set of eigenvectors, while A, does not. It is noted 

with strong shocks, as was also found in Ref. [28]. 
that the eigenvalues and eigenvectors of A and A, are 

Primitive variables are used in the present study. It is also 
generally not the same. Since A, does not have a complete 

noted that cell-length weighting for nonuniform grid 
set of eigenvectors, a system of equations that consists of F, 

spacing is included in Eqs. (23)-(25) in the present 
alone does not have hyperbolic character. In consequence, 

formulation. 
the inhomogeneous flux and its associated Jacobian A, do 

The derivation of the split fluxes in the q-direction follows 
not need splitting. Hence the split fluxes for a gas with 

the same procedure as described in Eqs. (19)(25). 
arbitrary equation of state may be expressed as 

F’ = F; + iFi,, 
4. LU IMPLICIT ALGORITHM = (A’ - $A,,)U, (27) 

The discretized governing equations may be solved using 
either an explicit or implicit scheme. When only steady-state and (A* - +A,) are the split Jacobian matrices to be used 
solutions are required, the implicit scheme is generally in the implicit operator. 
favored for its superior convergence. Since the mid- If the equation of state has the functional form 
seventies, the AD1 method has been successfully applied to 
various aerodynamic problems involving calorically perfect P=d(e, Y. I,,= I,...,N- 1 ) 3 (28) 
gases. Since the AD1 method (and most other implicit 
schemes) requires inversion of block banded (tridiagonal or then it can be shown that Fin= 0, Ain= 0, and the 
pentadiagonal) matrices, it becomes prohibitively inefficient homogeneous property of the flux vector is recovered. The 
for chemical/thermal nonequilibrium flows due to the large equation of state used in the present study, i.e., Eq. (3), is 
block size resulting from the large number of species and clearly a special case of Eq. (28), and therefore F = AU; 
thermal energy equations. One alternative is to use the hence the split flux Jacobian derived in Eq. (12) may be used 
lower-upper (LU) approximation to factor the implicit in the implicit operator. We note that metric factors at 
operator [3, 5, 18, 193. Unlike the block banded system of interfaces are used in d&. We further note that the a * 
the AD1 scheme, the LU scheme results in a block diagonal of Eq. (12) are the approximate split Jacobians, which 

(234 
torizable, providing additional advantage in numerical 
efficiency. In the following, we first present the construction 
of the flux and chemical source Jacobian matrices for 

(23b) chemical nonequilibrium gases, and then we show the 
implementation of the LU algorithm and discuss the 
advantages of the method. 

4.1. Split-Flux Jacobian Matrices 

For a gas with an arbitrary equation of state, the flux 
(244 vectors F(U) and G(U) are not homogeneous functions of 

degree one in U. In this case, the inviscid flux F (similarly 
for G) can be expressed as the sum of a homogeneous flux 

(24b) F, and an inhomogeneous flux F;,, i.e., 

F = F, + F,, Wa) 

(254 
and 

(25b) 
A=g=A,+A,,; (26b) 
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are slightly different from the true split Jacobians, 
A&, = a 0 */au. The use of approximate split Jacobians in 
the implicit operator may adversely affect the convergence 
of the scheme. However, since evaluation of the true split 
Jacobians for a nonequilibrium gas is computationally 
expensive, no attempt was made to use the true split 
Jacobian in the present study. Later in the Numerical Test 
section, we will show that the approximate Jacobians yield 
good convergence rates for a wide variety of flows. 

Hence the viscous Jacobian, T = 8 c,/a( 8 U/@) is obtained, 

4.2. Viscous Flux Jacobian 

Although the full Navier-Stokes equations are 
considered in the evaluation of the residual operator, for 
simplicity the thin-layer version of the viscous fluxes is used 
in the implicit operator. The two-dimensional thin-iayer 
viscous flux vector in general coordinates can be written as 

-P4$U L, -B4D1rn Y, 0 

-BJLn Y, 0 

- LLD,nt Y, 0 

-P4D4m Y, 0 

0 0 0 

0 0 0 

0 0 0 

0 
0 
0 
0 

0 

0 

0 

a4 

0 
0 
0 

0 

0 

0 

a3 

0 
0 

a,$ El a2 
” 

e,= 

where 

, (29) 

0 B4D1m 0 

0 o b4D2m 

0 0 0 b4D3m 

0 0 0 0 P4D4m _ 

, 

hi=hi-hN, Z,=e,-eN, 

c,= 2 Yic”8, 
i=l 

where 

and V is the cell volume. 
Assuming the transport coefficients p, k, and D, are 

frozen with respect to changes in U and space, it can be 
shown that 

and C,, is the constant volume specific heat of species i. “I au afj a(au/aq). 



4.3. Chemical Source Term and Source Jacobian for ideal-gas flows is not fully realized in nonequilibrium 

For a set of N, elementary reactions involving N species, 
computations in the present study. But the advantage over 

the rate equations can be written in the general form 
explicit methods for the same problem is still very great. 
This issue will be further discussed in the Convergence 
Property section. 

4.4. LU Factorization 

(31) Discretizing the implicit operator using first-order 
inviscid terms and central- 

where v; and v;; are the stoichiometric coefficients for 
upwind differencing for 

species j appearing as a reactant in the ith forward and 
differencing for viscous terms, the governing equations in 
the finite-volume form can be written as 

backward reactions, respectively, and nj is the molar con- 
centration for species j (n, = Cjl Wj). Also, k, and k,, respec- {I+dt[dlA~j+d~A,+d,B~j+~~~,~i 
tively are the forward and backward reaction rate constants 
for the ith reaction step. The reaction rate constant ki (k, or - (R,, + 1 -2~i,j+r?l,,,~1)-H,,l} 86 

kh,) is given empirically by the Arrhenius expression = -At Ri,j, (34) 

ki=A,T”‘~epEIIRuT, (32) 
where H = aS/aIJ is the chemical source term Jacobian 
[lS], T is the viscous Jacobian as defined in Eq. (30), Ri,.i 

where Ei represents the activation energy, and A i and mi are 
is obtained by Eq. ( 18), 6U = V 6U, and V is the cell 

constants. 
volume. Substituting the one-sided spatial differencing 

From Eq. (31) the rate of change of mass concentration of 
formula for d *, Eq. (34) becomes 

species j is obtained by summing up the changes due to all 
reaction steps, [I+dt(;i,t,-;i,i+B,:,-B,~j+2~i,j-H,,,) 

sj= w, z 

-dt(Ai+_,,j+Bit,~,+~i,j-,) 

[ 
(v;-v:,) +At (;i,~+,,,+B,~j+,-~;,j+I)] szr 

!=I 
= -At R,,j. (35) 

\ /=I ,=, /_I Equation (35) can be symbolically expressed as 

We observe from Eqs. (32) and (33) that the chemical 
source term is an exponential function of temperature and a 

[D+L+U]6u=-AtR, (36) 

nonlinear function of species concentration. Because of the where 
highly nonlinear nature of chemical kinetics and the vastly 
different chemical time scales involved in the individual 

D=I+At (;i;j-A,+&j 

elementary reactions, the set of species equations in Eq. (1) - Bi,i + 2iI;, j - Hi, j), 
is generally very stiff. To mitigate the stiffness problem, the 
chemical source terms are treated implicitly so that the L= -At (A~,,j+B,t,_,+~~,j~l), (37) 

stiffness of the species equations does not appreciably u=At(‘,~,,,+~;,+,-~;,j+I). 
degrade the rate of convergence or upset the numerical 
stability. Details for the construction of the source term Note that D consists of only diagonal terms, L only the 
Jacobian can be found in [ 151. terms in the lower triangular matrix, and U the upper 

We note that, despite the implicit treatment of chemical triangular matrix. The left-hand side of Eq. (36) can be 
source terms, the set of species equations still becomes very approximately factored into the product of two operators 
difficult to solve numerically at regions where the tem- 
perature and density are very high and chemical reactions (D+L)D-‘(D+U)du=-AtR. (38) 
are intensive. In fact, we have observed throughout the 
study that the maximum CFL number allowable for stable This scheme can be implemented in the following sequence: 
computation is very often limited by chemical kinetics (the 
maximum CFL number for nonequilibrium calculations is (D+L)60*= -AtR, Wa) 
limited to between 2 and 10, depending on the field 
temperature and shock strength), and the benefit of large 

(D+U)6o=D6e*, Wb) 

CFL number (CFL 9 1) associated with implicit schemes U “fl+I=UH+(jQ (39c) 
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0.235 

NO 

0.0 

FIG. 2. Species mass fraction contours for flow over a half-cylinder, 
M, = 7.0. 

model would obtain (see Fig. 3). The lower temperatures 
are obviously the result of air dissociation (see Fig. 2) and 
the increased specific heat at high temperatures. 

It should be mentioned here that the Roe flux-difference 
splitting was also used to calculate this flow, and the results 
(not shown here) showed the presence of an expansion 
shock as the flow reaccelerates from near the stagnation 
point to supersonic velocity farther downstream along the 
cylinder wall. This result is not surprising, however, since it 
is well known that Roe splitting violates the entropy condi- 
tion and admits expansion shocks [7]. Although adding a 
small amount of dissipation near the sonic point may 
circumvent this difficulty, no such attempt was made in the 
present study. 

Figure 2 shows the mass fraction contours for species 0,) 
0, NO, and N, with their maximum and minimum values 
indicated. Along the symmetry plane (the plane through the 
stagnation point), the temperature and density increases 
across the bow shock are the largest, resulting in very inten- 
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FIG. 3. Wall pressure, temperature, and species mass fraction profiles 
for flow over a half-cylinder, M, = 7.0. 

sive chemical reactions behind the shock, as indicated by the 
rapid changes of mass fraction in this region. Far away from 
the symmetry plane, the increases in temperature and 
density are smaller, and therefore chemical reactions are 
proceeding at a slower rate, resulting in a more gradual 
change of species concentrations. 

Figure 3 shows the pressure, temperature, and mass frac- 
tion profiles along the cylinder wall. The abscissa X of the 
coordinates denotes the position along the half-cylinder 
wall, from bottom to top. Both the ideal- and non- 
equilibrium-gas results are presented for comparison. The 
ideal-gas model (with y = 1.365 for air at T= 600 K, 
p = 1 atm) yields higher temperatures than the non- 
equilibrium model, while the two models produce almost 
exactly the same pressures. The mass fraction profiles 
indicate that significant dissociation and recombination 
reactions occur and the ideal-gas model fails to represent 
the flowfield. It is also observed that, because of the high 
pressure and temperature levels and the long flow residence 

581/99/2-5 
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FIG. 4. Shock standoff distance for flow over a half-cylinder. 

time (due to the low velocity in the boundary layer) near the 
wall, the mass fractions predicted by the nonequilibrium 
model are very close to the equilibrium values (not shown 
here) at the same wall pressures and temperatures. 

Ambrosio and Wortman [29] correlated the experimen- 
tal data for shock standoff distance from a circular-cylinder 
over a wide range of Mach numbers. In Fig. 4, we compare 
the present numerical results of the normalized standoff dis- 
tance A/R (R is the radius of cylinder) with the correlation 
in [29]. Since the experimental data adopted in [29] were 
based on tests made at relatively low total temperatures, it 
would be expected that the correlation would be most 
accurate for an ideal gas with y = 1.4; hence, in addition to 
the real-gas predictions, we also present results of ideal-gas 
calculations (with y = 1.4). Figure 4 shows that the ideal-gas 
predictions agree very well with the correlation in [29], 
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while the real-gas calculations yield reduced standoff 
distance at higher Mach numbers, in accordance with the 
finding by Billig [30]. The real-gas effect of reduction in 
standoff distance at high Mach numbers can be attributed 
to the stronger compression (larger density jump across the 
shock) in real gases, caused by the much reduced tem- 
perature rise behind the shock. At lower Mach numbers, 
chemical reactions and real-gas effects are not significant 
due to the smaller temperature rise across the shock. 
Consequently, the nonequilibrium model yields similar 
shock standoff distance as the ideal-gas model. 

5.2. Ramped-Duct Flow 

The adoption of the ramped-duct flow as a model 
problem is to demonstrate the ability of the present numeri- 
cal method to resolve the complicated wave structure and 
flow separation involved in the shock wave/shock wave and 
shock wave/boundary layer interaction processes. The test 
model consists of a two-dimensional channel with an 18” 
compression ramp in front and a 12” expansion ramp in the 
rear. The inflow pressure is at 1 atm, temperature 500 K, 
and Mach number 4. The Reynolds number based on the 
channel height at inlet and freestream velocity is 3.10 x 106. 
Both Roe and Van Leer splitting are used in this calcula- 
tion; since the two schemes yield very similar results, only 
predictions from the Van Leer splitting (with MUSCL 
differencing) are shown here. 

Figure 5 displays the static pressure contours for both the 
inviscid and viscous calculations. The inviscid result shows 
that the shock waves are captured very crisply and 
monotonically. In the viscous case, the flow structure is 
more complicated, involving the shock wave/shock wave 
and shock wave/boudary layer interactions and large scale 
flow separations. The chemical reactions and real-gas effects 
are not significant in this case due to the relatively low total 
temperature. In fact, most chemical reactions occur in the 
near wall region in the viscous case, generating only trace 
amounts of NO and 0 species there. 

lnviscid 

FIG. 5. Static pressure contours for flow in a ramped-duct, M, = 4.0. 
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FIG. 6. Wall pressure profiles for flow in a ramped-duct, M, = 4.0. 

Figure 6 presents the static pressures along the top and 
bottom walls for the viscous case. The pressure profiles 
vividly illustrate the various waves, with each pressure peak 
and valley corresponding to a particular wave action, i.e., 
the leading edge shock, the ramp shock, the corner expan- 
sion wave, the separation shock, the expansion wave behind 
the crest of the separation bubble, and the reattachment 
shock. Figure 7 displays the velocity vectors in the duct. For 
clarity of presentation, only the velocity vector for every 
three grid points in the streamwise direction and every two 
grid points in the normal direction is plotted. Two separa- 
tion zones along the bottom wall and three zones along the 
top wall can be identified from the vector plot. A close com- 
parison of Figs. 6 and 7 clearly shows the relationship and 
interactions between the waves and the separation bubbles; 
in particular, each flow reattachment point corresponds to 
a strong pressure peak. 

5.3. Shock WavelLaminar Boundary Layer Interaction 

This test case is adopted to investigate the solution 
accuracy of the viscous part of the Navier-Stokes equations. 
The shock wave/laminar boundary layer interaction 
problem has been studied by several other researchers 
[ 3 1, 321, and a more detailed description of the flow can be 
obtained from their work. The model problem consists of an 
oblique shock wave impinging on a flat plate in a supersonic 
laminar flow. The shock angle is set to 32.6”, the freestream 
Mach number is 2, and the Reynolds number based on the 

separation 
region 

distance from the flat plate leading edge to the shock 
impingement point is 0.296 x lo6 (the impingement point is 
not well-defined in viscous flow, and therefore the inviscid 
impingement point is used for Reynolds number evaluation, 
see Ref. [ 3 1 ] ). The real-gas effects are neglected in this case. 
The computational domain begins five grid points ahead of 
the plate, and the top boundary extends far enough so that 
the leading edge shock and the reflected shock pass through 
the outflow boundary. 

The calculated pressure (p/p,) and skin friction coef- 
ficient (<,= 2z,/p cc u’, , t,, is the wall shear stress) distribu- 
tions are shown in Figs. (Sa) and (8b), respectively, along 
with experimental data [33] and numerical results by other 
researchers [ 3 1, 321. The abscissa X/L is the distance from 
the leading edge of the flat plate, normalized by the length 
from the leading edge to the shock impingement point. The 
agreement in wall pressure is very good, but relatively large 
discrepancy exists between the experimental data and the 
predictions in skin friction, probably due to the transition 
from laminar to turbulent flow in the boundary layer 
downstream of the interaction region, which is not 
considered in the numerical simulations. 

5.4. Divergent Nozzle Flow 

To further illustrate the nonequilibrium effect, results for 
air flow with high inlet temperature and pressure, i.e., 
T = 5000 K and p = 10 atm, expanding through a divergent 
nozzle of area-ratio 21 are presented in this subsection. The 
inflow air upstream of the nozzle entrance is assumed to be 
at chemical equilibrium with a uniform velocity profile at 
Mach number of 1.01. The results presented here are 
obtained using Roe’s splitting. 

The cross-sectional area (in the unit of m*/m-width) of the 
two-dimensional nozzle is given by the equation 

A(X)=0.22+0.20sin[($-0.5Jn+B], 

where XL = 1.5 m is the nozzle length, 0 = 0.005 radians is 
a small phase angle, and X is the streamwise distance from 
the inflow plane. 

Figure 9 presents the static pressure, temperature, and 
species mass fractions for O,, 0, N, and NO along the 

separation 
region 

separation 
region 

FIG. 7. Velocity vectors for flow in a ramped-duct, M, = 4.0. 
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FIG. 8. Comparison of surface pressure and skin friction coefficient for shock/boundary layer interaction problem, M, = 2.0, Re = 0.296 x 106: 
(a) surface pressure distribution; (b) skin friction coefficient distribution. 

nozzle centerline. Because of the high temperature and chemistry, pressures and temperatures from the frozen- 
pressure involved, very intensive chemical reactions occur chemistry (allowing specific heat to vary with temperature) 
in the front section of the nozzle and species mass fractions and ideal-gas (constant specific heat, y = 1.4) calculations 
change significantly from their initial equilibrium values. But, are also presented in this figure for comparison. As the air 
because of the rapid decrease of temperature and pressure expands through the nozzle, the decrease in temperature 
due to the large expansion ratio of the nozzle, chemical reac- and pressure causes the dissociated species (0, N, and NO) 
tions become nearly frozen towards the rear section of the to recombine to form 0, and N,. In the process of recom- 
nozzle, as depicted in the mass fraction profiles. To illustrate bination, chemical energy is converted to thermal energy 
the effects of real-gas property and nonequilibrium which would slow down the decrease of temperature and 
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FIG. 9. Pressure, temperature, and species mass fraction profiles along the centerline of the divergent nozzle. 

pressure. Since the frozen and ideal-gas models do not 
account for the recombination reactions, they predict faster 
temperature and pressure drops during expansion than the 
nonequilibrium model. Also, because of the high tem- 
perature levels in the flow, the specific heat of the frozen- 
chemistry gas is larger than that of the ideal gas, which in 
turn results in a slower temperature and pressure decrease 
for the frozen model than the ideal-gas model. 

5.5. Convergence Property 

The convergence histories of the nonequilibrium calcula- 
tions for three cases discussed earlier, i.e., the blunt-body 
flow, ramped-duct flow, and the divergent nozzle flow, are 
shown in Fig. 10 for both inviscid and viscous flows. The 
slow down of convergence in the ramped-duct case in 
viscous calculation is attributed to the presence of large 
scale flow separations. The running time of the viscous 
calculations, including integrating eight equations, calcu- 
lating chemical source terms and thermophysical proper- 
ties, is about 95.5 p/grid point/time step on a CRAY-YMP 
computer, using the cft77 compiler. Overall, the efficiency 
(convergence rate and the cpu time/grid point/time step) and 
the robustness of the present method are very satisfactory. 

As mentioned earlier, the maximum allowable CFL num- 

bers for these calculations range between 2 to 10 and are 
limited by chemical kinetics rather than the stability of the 
numerical method. In fact, it was found in the present study 
that calculations using the ideal-gas model yield residuals 
typically one to three orders of magnitude smaller than 
those of the nonequilibrium model at the end of 3600 time 
steps. The most severe CFL number limitation (CFL = 2) 
occurs in the case of hypersonic flow over a circular half- 
cylinder. In this case the density and temperature behind the 
bow shock increase considerably. Since in the present 
chemistry model the elemental chemical reaction rates are a 
function of density squared or cubed (p* or p3, depending 
on the order of the reaction) and an exponential function of 
temperature, downstream of the shock the reaction rates 
become extremely large, rendering the species equations to 
be dominated by the chemical source terms. In this case, the 
meaning of the CFL number becomes less significant and 
the time step size is controlled by the need to resolve species 
concentration changes in this region. If too large a time step 
is used, undershoot or overshoot of species concentration 
occurs which destablizes the calculation, despite the implicit 
treatment of the source terms. To further clarify this issue, 
a test case was run with lower freestream pressure, i.e., 
pm = 0.01 atm (as opposed to 1.0 atm used in Section 5.1). 
In this case the reaction rates are significantly reduced (by 
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FIG. 10. Convergence histories of the present upwind method: (a) inviscid flows; (b) viscous flows. 

a factor of lo4 or more), and, as a result, the CFL number 
(time step size) can be increased to CFL= 5.0 without 
destablizing the computation. 

Throughout the study, it is found that the Roe scheme 
requires about 20% more cpu time per time step than the 
Van Leer scheme, and the MUSCL differencing always con- 
verges faster than the flux differencing for the same flow. The 
superior convergence property of the MUSCL differencing 
can be attributed to the following reasons. As discussed in 
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FIG. 11. Convergence histories of the LU-SGS method, viscous flows. 

[27], the fluxes in MUSCL are split according to the local 
cell interface Mach number, whereas in the flux differencing 
approach the splitting depends on the Mach number at 
various cell interfaces. Also, the split fluxes are generally less 
differentiable than the flow variables when eigenvalues 
change signs [27]. 

In recent years, the LU-SGS algorithm [ 191 has become 
quite popular for reacting flow calculations. As discussed in 
the Introduction, this method uses central difference for the 
explicit operator and one-sided difference for the implicit 
operator. In order to compare the relative efficiency of the 
present upwind algorithm with the LU-SGS method, 
numerical computations were also conducted using the 
LU-SGS method for some of the test flows considered in the 
present study. Only viscous cases are considered in the 
comparison and exactly the same grid distributions and 
boundary conditions as in the upwind calculations are used 
here. 

The convergence histories of the LU-SGS algorithm 
are shown in Fig. 11. The running time is 62.4 ps/grid 
point/time step (on a CRAY-YMP computer, cft77 com- 
piler), which is about 65 % of that of the present upwind 
method. For the half-cylinder and divergent nozzle flows, 
the LU-SGS method takes about 2.5 times the number of 
iterations as the upwind method to converge to the same 
level of residuals. For the ramped-duct case, the LU-SGS 
method encounters very slow convergence, likely caused by 
the massive flow separations. Overall, the comparison 
favors the upwind method over the LU-SGS scheme in both 
efficiency and robustness accounts. Similar findings have 
also been reported in [34]. 
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6. CONCLUDING REMARKS capability as well as the efftciency and robustness of the 
method. Numerical results also show that the present 

We have presented a numerical method for solving the method has the potential for calculating high speed non- 
chemical nonequilibrium Navier-Stokes equations. The equilibrium flows with complex wave structure. Work for 
method is based on a finite-volume, upwind, TVD spatial further algorithm validation, expecially for the accuracy of 
discretization integ.rated by an upwind LU algorithm. the chemistry and the viscous formulation, is still needed 
Various test cases demonstrate the good shock-capturing and is being planned. 
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where 

Q=klua+k,va, 

@ = pp +p; -F (H- 2.2 - v2), 

9. M. Vinokur and J. L. Montagne, J. Compur. Phys., to appear. 
10. Y. Liu and M. Vinokur, J. Compur. Phys. 83,373 (1989). 
11. P. Collela and H. M. Glaz, J. Compur. Phys. 59,264 (1985). 
12. B. Grossman and R. W. Walters, AIAA Paper 87-1117-CP, 1987 (A.3) 

(unpublished). 
13. P. Glaister, J. Compur. Phys. 74, 382 (1988). 

14. M. S. Liou, B. van Leer, and J. S. Shuen, J. Compur. Phys. 87,l (1990). 
and k, and k, are the orientations of the interface of the two 15. J. S. Shuen, M. S. Liou, and B. van Leer, J. Comput. Phys. 90, 371 
neighboring cells; i.e., (1990). 

16. R. M. Beam and R. F. Warming, J. Comput. Phys. 22,87 (1976). 

(A.4) 
17. A. Jameson and E. Turkel, Math. Compur. 37,385 (1981). 
18. A. Jameson and S. Yoon, AZAA J. 25,929 (1987). 
19. J. S. Shuen and S. Yoon, AZAA J. 27, 1752 (1989). 

The similarity matrices in the q-direction, S, and S; ’ , are 
found by letting 

k1=j& k2=J&. (A.5) 

in Eqs. (A.1) and (A.2). 
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